Continuous Gaussian Mixture Modeling

نویسندگان

  • Stephen R. Aylward
  • Stephen M. Pizer
چکیده

When the projection of a collection of samples onto a subset of basis feature vectors has a Gaussian distribution, those samples have a generalized projective Gaussian distribution (GPGD). GPGDs arise in a variety of medical images as well as some speech recognition problems. We will demonstrate that GPGDs are better represented by continuous Gaussian mixture models (CGMMs) than finite Gaussian mixture models (FGMMs). This paper introduces a novel technique for the automated specification of CGMMs, height ridges of goodness-of-fit. For GPGDs, Monte Carlo simulations and ROC analysis demonstrate that classifiers utilizing CGMMs defined via goodness-of-fit height ridges provide consistent labelings and compared to FGMMs provide better truepositive rates (TPRs) at low false-positive rates (FPRs). The CGMM-based classification of gray and white matter in an inhomogeneous magnetic resonance (MR) image of the brain is demonstrated.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Segment-Based Acoustic Models for Continuous Speech Recognition

ity or acoustic observations conditioned on the state in Tied-mixture (or semi-continuous) distributions are an imhidden-Markov models (11MM), or for the case of the portant tool for acoustic modeling, used in many highSSM, conditioned on a region of the model. Some of the performance speech recognition systems today. This paper options that have been investigated include discrete dispiovides a...

متن کامل

Text-independent speaker identification using Gaussian mixture bigram models

In this paper, a novel speaker modeling technique based on Gaussian mixture bigram model (GMBM) is introduced and evaluated for text-independent speaker identification (speaker-ID). GMBM is a stochastic framework that explores the context or time dependency of continuous observations from an information source. In view of the fact that speech features are correlated between successive frames, w...

متن کامل

Stochastic trajectory model with state-mixture for continuous speech recognition

The problem of acoustic modeling for continuous speech recognition is addressed. To deal with coarticulation effects and interspeaker variability, an extension of the Mixture Stochastic Trajectory Model (MSTM) is proposed. MSTM is a segment-based model using phonemes as speech units. In MSTM, the observations of a phoneme are modeled by a set of stochastic trajectories. The trajectories are mod...

متن کامل

High accuracy acoustic modeling based on multi-stage decision tree

In many continuous speech recognition systems based on HMMs, decision tree-based state tying has been used for not only improving the robustness and accuracy of context dependent acoustic modeling but also synthesizing unseen models. To construct the phonetic decision tree, standard method has used just single Gaussian triphone models to cluster states. The coarse clusters generated using just ...

متن کامل

Restructuring Gaussian mixture density functions in speaker-independent acoustic models

In continuous speech recognition featuring hidden Markov model (HMM), word N-gram and time-synchronous beam search, a local modeling mismatch in the HMM will often cause the recognition performance to degrade. To cope with this problem, this paper proposes a method of restructuring Gaussian mixture pdfs in a pre-trained speaker-independent HMM based on speech data. In this method, mixture compo...

متن کامل

Semi-continuous segmental probability modeling for continuous speech recognition

In this paper the design of semi-continuous segmental probability models (SCSPMs) in large vocabulary continuous speech recognition is presented. The tied Gaussian densities are trained using data from all states of all utterances while the mixture weights are estimated using data from the state being trained individually. The SCSPMs tie all the densities of all states from all Speech Recogniti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997